
CLIPS-03

Control Techniques

By Gwo-Jen Hwang

CLIPS03-1

•Game of Sticks
(poison.clp)

Initially, there are n sticks.
Two persons take the sticks in turn.
Each time only one to three sticks can be taken.
The one who takes the last stick loses.

5
9
13
17
.
.
.

The winning points

CLIPS03-2

(defrule player-select
(phase choose-player)
=>
(printout t “who moves first (c/h) ?”)
(assert (player-select =(READ)))

)

(defrule good-player-choice

?phase <- (phase choose-player)

?choice <- (player-select ?player&c|h)
=>
(retract ?phase ?choice)
(assert (player-move ?player))

)

enter next phase:
start the game

initial phase

CLIPS03-3

(defrule bad-player-choice

?phase <- (phase choose-player)

?choice <- (player-select ?player&~c&~h)
=>
(retract ?phase ?choice)
(assert (phase choose-player))
(printout t “Stupid! Choose again!”crlf)

)

(printout t t “ok”t t t)

send messages
to terminal

next line

ok

Screen

blank
lines

cursor

CLIPS03-4

•Predicate (boolean) Functions
(p.444 ~ p.445)

NOT
AND
OR
EQ equal (any)
NEQ not equal (any)
= equal (numeric only)
!= not equal (numeric only)
>=
<=
<
>

(EQ John John) T
(< 6 8) T
(= 5 4) F
(AND (< 4 5)

(= 6 7)) F
(NOT (!= 6 5)) F

CLIPS03-5

numberp
stringp
wordp type predicate
integerp functions
evenp
oddp

(numberp 5) T
(numberp John) F
(stringp “ok”) T
(evenp 5) F

CLIPS03-6

(defrule get-human-move
(player-move h)

(pile-size ?size)
(test (> ?size 1))
=>
(printout t “How many sticks do you want to take?”)
(assert (human-takes =(read)))

)

matching

test condition

CLIPS03-7

(defrule good-human-move

?whose-turn <- (player-move h)

?pile <- (pile-size ?size)

? number-taken <- (human-take ?choice)

(test (and (integerp ?choice)

(>= ? choice 1) test valid

(<= ?choice 3) moves

(< ?choice ?size)))

=>

(retract ?whose-turn ?number-taken ?pile)

(assert (pile-size =(- ?size ?choice)))

(assert (player-move c))

)

CLIPS03-8

•Predicate field constraint ?

(pile-size ?size)
(test (> ?size 1))

(pile-size ?size&:(> ?size 1))

(defrule add-sum
(data-item ?value&:(numberp ?value))

?old-total <- (total ?total)
=>
(retract ?old-total)
(assert (total =(+ ?total ?value)))

)

only the fact which satisfies the
constraint will be matched

CLIPS03-9

•Equality Field Constraint
“=”

(defrule computer-move
?whose-turn <- (player-move C)
?pile <- (pile-size ?size)
(test (> ?size 1))
(computer-take ?number sticks-remained =(mod ?size 4))
=>
(retract ?whose-turn ?pile)
(assert (pile-size =(- ?size ?number)))
(assert (player-move h))

)

(computer-take 1 sticks-remained 1)
(computer-take 1 sticks-remained 2)
(computer-take 2 sticks-remained 3)
(computer-take 3 sticks-remained 0)

CLIPS03-10

(defrule test
(data length ?y)
(data width ?x&=(+ 9 ?y) | =(- 8 ?y))

=>
)

(data length 4)

(defrule test
(data width ?x&9|8)

=>
)

(data width 9) matched !
(data width 8) matched !

CLIPS03-11

•Salience

(defrule fire-first
(declare (salience 30))
(priority first)
=>
(printout t “print first”crlf)

)

-10000 Salience 10000
default = 0

CLIPS03-12

•The main advantage of a rule-based program is that
“programmer does not have to
worry about controlling execution”

The execution flow is fully controlled by inference engine.

The programmer does not need to specify which rule should
be fired next.

Using too many “Salience”will violate this advantage and
make the expert system work like a conventional program.

CLIPS03-13

•The uses of salience
Salience should primarily be used to determine the order of
firing rules.

Salience should NOT be used as
a method of selecting rules to fire.

CLIPS03-14

(defrule pick-A
(declare (salience 10))
?phase <- (choose-move)
(ready A)

=>
(retract ?phase)
(assert (picked A))

)

(defrule pick-B
(declare (salience 5))

?phase <- (choose-move)
(ready B)
=>
(retract ?phase)
(assert (picked B))

)

(defrule pick-C
?phase <- (choose-move)
(ready C)...

pick-A
pick-B
pick-C

AGENDA

If rule pick-A is fired, rules
pick-B and pick-C will be
removed from AGENDA since
(choose move) is removed.

In this case, Saliences are used to
imply if A, B and C are all true,
choose A first

BAD

CLIPS03-15

A rule should be independent with any other rule.

(defrule pick-B
(declare (salience 5))
?phase <- (choose-move)
(ready B)
=>
(retract ?phase)
(assert (picked B))

)

(defrule pick-B
?phase <- (choose-move)
(ready B)
(not (ready A))

=>
(retract ?phase)
(assert (picked B))

)

IF both A and B are ready,
choose A.

The meaning of this rule is
dependent on rule pick-
A.

If pick-A is deleted, or
new rules with higher
saliences are inserted, the
meanings may be changed.

Not easy to maintain!

GOOD !

CLIPS03-16

•Phase and Control Facts

Detection

Isolation

Recovery

rules

rules

rules

phase 1

phase 2

phase 3

Expert
Knowledge

Control
Knowledge

Detection
Rules

Recovery
Rules

Isolation Rules

Control Rules

CLIPS03-17

•Control rules

(defrule detection-to-isolation
(declare (salience -10))
?phase <- (phase detection)
=>
(retract ?phase)
(assert (phase isolation))

)

Fact: (phase detection)

detection to
isolation

Expert knowledge
rules of detection phase

Control rules

0

0

-10

CLIPS03-18

(defrule isolation-to-recovery
(declare (salience -10))
?phase <- (phase isolation)
=>
(retract ?phase)
(assert (phase recovery))

)

(defrule recovery-to-detection
:
:

)

(defrule find-fault-location-and-recovery
(phase recovery)
(recovery-solution switch-device ?x on)
=>
(printout t “Switch device?”?x “on”crlf)

)

Control rules

A rule of recovery phase

CLIPS03-19

CLIPS> (assert (phase detection))
CLIPS> (watch rules)
CLIPS> (run 10)

FIRE 1 detection-to-isolation : f-1
FIRE 2 isolation-to-recovery : f-2
FIRE 3 recovery-to-detection : f-3
FIRE 4 detection-to-isolation : f- 4
FIRE 5 isolation-to-recovery : f-5

.

.

FIRE 10 detection-to isolation : f-10

rule firing limit reached
10 rules fired

CLIPS>

CLIPS03-20

(deffacts Control-Information
(phase detection)
(phase-after detection isolation)
(phase-after isolation recovery)
(phase-after recovery detection)

)

(defrule change-phase
(declare (salience -10))

?phase <- (phase ?current-phase)
(phase-after ?current-phase ?next)

=>
(retract ?phase)
(assert (phase ?next))

)

CLIPS03-21

•Salience hierarchy

Expert Rules

Control Rules

Constraint

Expert

Query

Control

Test input data

2 levels

Salience

Salience

4 levels

0

-10

10

0

-5

-10

CLIPS03-22

•Pattern Logical “OR”
(defrule shut-off-electricity

(or (emergency flood)
(fire-class C)
(sprinkler-system active)

)
=>
(printout t “Shut off the electricity”crlf)

)

(defrule shut-off-electricity
(electricity-power on)

AND (or (emergency flood)
(fire-class C) OR
(sprinkler-system active)

)
=>
(printout t “Shut off …”crlf)

)

CLIPS03-23

(defrule shut-off
?power <- (electricity-power on)
(or ?reason <- (emergency flood)

?reason <- (fire-class C)
?reason <- (sprinkler-system active)

)
=>
(retract ?power ?reason)
(assert (electrical-power off))

)

(defrule shut-off
?power <- (electrical-power on)
(or ?reason1 <- (emergency flood)

?reason2 <- (fire-class C)
?reason3 <- (sprinkler-system active)

)
=>
(retract ?power ?reason1 ?reason2 ?reason3)
(assert (electrical-power off))

)

CLIPS03-24

•Pattern Logical “AND”
(defrule electrical-fire

(emergency fire)
(fire-class C)

=>
(printout t “Shut off the electricity”crlf)

)

(defrule electrical-fire
(and (emergency fire))

(fire-class C)
)

=>
(printout t “Shut off the electricity”crlf)

)

CLIPS03-25

(defrule shut-off-electricity

?power <- (electrical-power on)
(or (emergency flood)

(and (emergency fire)
(fire-class C)

)
(sprinkler-system active)

)
=>
(retract ?power)
(assert (electrical-power off))
(printout t “shut off the electricity”crlf)

)

1

2

3

CLIPS03-26

(defrule shut-off-1
?power <- (electrical-power on)
(emergency flood)
=>
(retract ?power)

)
(defrule shut-off-2

?power <- (electrical-power on)
(emergency fire)
(fire-class C)

=>
(retract ?power)

)
(defrule shut-off-3

?power <- (electrical-power on)
(sprinkler-system active)

=>
(retract ?power)

:
)

1

2

3

CLIPS03-27

•Pattern Logical “NOT”
(defrule no-emergency

(report-status)
(not (emergency ?))

=>
(printout t “No emergency”crlf)

)

(defrule Largest-number
(number ?x&:(numberp ?x))
(not (number ?y&:(> ?y ?x)))

=>
(printout t “Largest number is”?x crlf)

)

No such fact exists

There does not exist some ?y, such that ?y > ?x.

?x should be the maximum value

CLIPS03-28

EX. 9-5 Is the variable X referenced properly
for the following rules?

1. (defrule example-1
(not (fact ?x))
(test (> ?x 4))

=>
:

)
2. (defrule example-2

(not (fact ?x &:(> ?x 4)))
=>

:
)

3. (defrule example-3
(not (fact ?x))
(fact ?y &: (> ?y ?x))

=>
:

)
4. (defrule example-4

(not (fact ?x))
(fact ?x &: (> ?x 4))

=>
:

)

