CLIPS-03

Control Techniques

By Gwo-Jen Hwang

e Game of Sticks
(poison.clp)

\

Initially, there are n sticks.
Two persons take the sticks in turn.
Each time only one to three sticks can be taken.
The one who takes the last stick loses.
>~
9
13 The winning points

17/

CLIPS03-1

(defrule player-select
(phase choose-player) initial phase
=>
(printout t “who movesfirst (c/h) ?°)
(assert (player-select =(READ)))

(defrule good-player-choice
?phase <- (phase choose-player)
?choice <- (player-select ?player& clh)
=>
(retract ?phase ?choice)
(assert (player-move ?player))

enter next phase:
start the game CLIPS03-2

(defrule bad-player-choice
?phase <- (phase choose-player)
?choice <- (player-select ?player& ~c&~h)
=>
(retract ?phase ?choice)

(assert (phase choose-player))
(printout t “Stupid! Choose again!” crlf)

blank

)
(printout t t “ok”t t t)
send messages nex£ i/ine
to terminal
Screen 7
ok

7 lines

[
cursor —

CLIPS03-3

 Predicate (boolean) Functions
(p.444 ~ p.445)

NOT
AND
OR
EQ
NEQ

equal (any)
not equal (any)
equal (numeric only)

not equal (numeric only)

>=

<=

<

>
(EQJohnJohn) == T
(< 6 8) =T
(= 5 4) ==F

(AND (< 4 5)

(=6 7)) =—F

(NOT (= 65) —=F

CLIPS03-4

numberp
stringp ™
wordp type predicate
Integerp functions

evenp /

oddp

(numberp 5)
(numberp John)
(stringp ““ok™)

(evenp 5)

Vv

CLIPS03-5

(defrule get-human-move
(player-move h)

> matching
(pile-size ?size)

(test (> ?5izel)) test condition

=>

(printout t “How many sticks do you want to take?”’)
(assert (human-takes =(read)))

CLIPS03-6

(defrule good-human-move

2whose-turn <- (player-move h)

?pile <- (pile-size ?size)

? number-taken <- (human-take ?choice)

(test (and (integerp ?choice) ~_
(>= ?choicel)

(<= ?choice 3)
(< “?choice ?7sze))) —

=>

test valid

MOVeS

(retract whose-turn ?number-taken ?pile)

(assert (pile-size =(- ?size ?choice)))

(assert (player-movec))

CLIPS03-7

 Predicatefield constraint ?

(pile-size ?size)
(test (> 7size 1))

v

(pile-size ?size&:(> ?size 1))

only the fact which satisfies the
constraint will be matched

(defrule add-sum
(data-item value& :(numberp ?value))

?0ld-total <- (total ?total)

=>

(retract ?old-total)

(assert (total =(+ ?total ?value)))

)

CLIPS03-8

« Equality Field Constraint

ce9

(defrule computer-move
2whose-turn <- (player-move C)
?pile <- (pile-size ?size)

(test (> 7dze 1))
(computer-take 2number sticks-remained =(mod ?size 4))
=>

(retract whose-turn ?pile)

(assert (pile-size =(- ?size “number)))
(assart (player-move h))

)

(computer-take 1 sticks-remained 1)
(computer-take 1 sticks-remained 2)
(computer-take 2 sticks-remained 3)
(computer-take 3 sticks-remained 0)

CLIPS03-9

(defrule test

(data length ?y)
(data width 2X&=(+ 9 ?) |=(- 8 %))
=>

U

(data length 4)

(defrule test

(data width ?x&9|8)
=>

!
(datawidth9) matched !
(datawidth8) matched !

CLIPS03-10

 Sdience

(defrule fire-first
(declare (salience 30))
(priority first)
=>
(printout t “print first” crlf)

-10000 < Salience < 10000
default = 0

CLIPS03-11

The main advantage of a rule-based program is that
“programmer does not have to
worry about controlling execution™

V

The execution flow is fully controlled by inference engine.

V

The programmer does not need to specify which rule should
be fired next.

Using too many “Salience” will violate this advantage and
make the expert system work like a conventional program.

CLIPS03-12

 The uses of salience

Salience should primarily be used to determine the order of
firing rules.

Salience should NOT be used as
amethod of selecting rulesto fire.

CLIPS03-13

(defrule pick-A

(declare (salience 10))
?phase <- (choose-move) pick-A |—
(ready A) pick-B
= pick-C
(retract ?phase)
(assert (picked A)) AGENDA /
)
(defrule pick-B If rule pick-A isfired, rules
(declare (salience 5)) pick-B and pick-C will be
) removed from AGENDA since
zfegdas;/e;) (choose-move) (choose move) is removed.
=>
(retract ?phase) @
(assert (picked B)) In this case, Saliences are used to
) imply if A, B and C areall true,

choose A first
(defrule pick-C @

?phase <- (choose-move)

(ready C) BAD CLIPS03-14

—>

A rule should be independent with any other rule.

(defrule pick-B
(declare (salience 5)) IF both A and B are ready,
?phase <- (choose-move) choose A.

N 7

v

(retract ?phase) 'Cll'he mganing of tlhisrull?is
i ependent on rule pick-
) (assert (picked B)) A
(defrule pick-B |f pickI-Ais dﬁlﬁteﬁ or
new rules with higher
?phase <- (choose-move) saliences are inserted, the
(ready B) meanings may be changed.
(not (ready A))

=> T GOOD! @

(retract ?phase)
(assert (picked B))

) CLIPS03-15

Not easy to maintain!

* Phase and Control Facts

phase 1

phase 2

phase 3

.| rules |

A

A

»| rules |

A

Detection

Rules

Recovery
Rules

| solation Rules

Control Rules

.| rules |

Expert
Knowledge

Control
Knowledge

CLIPS03-16

e Control rules

-10

(defrule detection-to-isolation
(declare (salience -10))

?phase <- (phase detection)
=>

(retract ?phase)

(assert (phase isolation))

)

Fact: (phase detection)

Expert knowledge
rules of detection phase

dgtectipn to Control rules
Isolation

CLIPS03-17

(defrule isolation-to-recovery
/' (dedlare (sdience -10)) T~

?phase <- (phase isolation)
=>

(retract ?phase)

(assert (phase recovery)) Control rules

™)

[(defrule recovery-to-detection

e

) A rule of recovery phase

(defrule find-fault-location-and-recovery
(phase recovery)
(recovery-solution switch-device ?x on)
=>
(printout t “Switch device?’ ?2x “on” crlf)
)

CLIPS03-18

CLIPS> (assert (phase detection)) «—
CLIPS> (watch rules) «——
CLIPS> (run10) «—

FIRE
FIRE
FIRE
FIRE
FIRE

detection-to-isolation : f-1
Isolation-to-recovery : f-2
recovery-to-detection : -3
detection-to-isolation : f- 4
Isolation-to-recovery : f-5

o WDNPRE

FIRE 10 detection-to isolation : f-10

rule firing limit reached
10 rulesfired

CLIPS> g

CLIPS03-19

(deffacts Control-Information
(phase detection)
(phase-after detection isolation)
(phase-after isolation recovery)
(phase-after recovery detection)

(defrule change-phase
(declare (salience -10))

?phase <- (phase ?current-phase)
(phase-after ?current-phase ?next)
=>

(retract ?phase)

(assert (phase next))

)

CLI1PS03-20

 Salience hierarchy

0

-10

10

-10

Expert Rules

Control Rules

Constraint

Expert

Query

Control

Salience

2 levels

Test input data

Salience

4 levels CLIPS03-21

 Pattern Logica “OR”
(defrule shut-off-€electricity
(or (emergency flood)
(fire-class C)
(sprinkler-system active)

)

=>
(printout t “Shut off the electricity” crlf)

U

(defrule shut-off-electricity
(electricity-power on)
AND (or (emergency flood)
(fire-class C) OR
(sprinkler-system active)

)

=>
(printout t “Shut off ...” crlf)
)

)

CLIPS03-22

(defrule shut-off
?power <- (electricity-power on)
(or ?reason <- (emergency flood)
?reason <- (fire-class C)
?reason <- (sprinkler-system active)

)

=>
(retract ?power ?reason)
(assert (electrical-power off))

)

(defrule shut-off
?power <- (electrical-power on)
(or ?reasonl <- (emergency flood)
?reason2 <- (fire-class C)
?reason3 <- (sprinkler-system active)

)

=>

(retract ?power ?reasonl ?reason2 ?reason3)
(assert (electrical-power off))

) CLIPS03-23

« Pattern Logical “AND”
(defrule electrical-fire
(emergency fire)
(fire-class C)
=>
(printout t “Shut off the electricity” crlf)
)

(defrule electrical-fire
(and (emergency fire))

(fire-class C)
)
=>
(printout t “Shut off the electricity” crlf)

)

CLIPS03-24

(defrule shut-off-electricity

?power <- (electrical-power on)

(or (emergency tflood) @
i) @
ispri nkler-system active) (3

.
(retract ?power)

(assert (electrical-power off))
(printout t ““shut off the electricity” crlf)

CLIPS03-25

(defrule shut-off-1
?power <- (electrical-power on)
(emergency flood)

=>
(retract power) D

)

(defrule shut-off-2
?power <- (electrical-power on)
(emergency fire) ®
(fire-class C)
=>
(retract ?power)

)
(defrule shut-off-3

?power <- (electrical-power on)
(sprinkler-system active) (3)
=>

(retract ?power)

CLI1PS03-26

« Pattern Logical “NOT”
(defrule no-emergency
(report-status)
(not (emergency ?))
=> T~

(printout t “No emergency” crlf)

No such fact exists

(defrule Largest-number
(number ?x& :(numberp ?x))
(not (number & : (> 2y 2X)))
=>
(printout t “Largest number is” ?x crlf)

There does not exist some ?y, such that ?y > ?x.

~

. CLIPS03-27
?x should be the maximum value

EX.9-5 Isthevariable X referenced properly
for the following rules?

1. (defrule example-1
et (o o A)

2. (defrule example-2
(not (fact ?x & :(> ?x 4)))
=>

3. (defrule example-3
gnot fact X))
fact ?y &: (> 2y X))

4, 2defrule example-4
gnot fact ?7X))

fact X &: (> ?x 4))
=> -

)

CLI1PS03-28

